Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hydrogen-bonded dimers in 2-nitrobenzaldehyde hydrazone and a three-dimensional hydrogen-bonded framework in 3-nitrobenzaldehyde hydrazone

Christopher Glidewell, ${ }^{\text {a* }}$ John N. Low, ${ }^{\text {b }}$ Janet M. S. Skakle ${ }^{\text {b }}$ and James L. Wardell ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and 'Instituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
Correspondence e-mail: cg@st-andrews.ac.uk

Received 13 July 2004
Accepted 26 July 2004
Online 21 August 2004
Molecules of 2-nitrobenzaldehyde hydrazone, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$, where $Z^{\prime}=2$, are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into isolated dimers, whereas in the isomeric 3-nitrobenzaldehyde hydrazone, where $Z^{\prime}=1$, the molecules are linked by one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond into a three-dimensional framework structure.

Comment

We report here the structures of the isomeric title compounds, 2-nitrobenzaldehyde hydrazone, (I) (Fig. 1), and 3-nitrobenzaldehyde hydrazone, (II) (Fig. 2), and compare their supramolecular structures with that of the further isomer 4-nitrobenzaldehyde hydrazone, (III), which was reported recently (Glidewell et al., 2004).

(I)

(IV)

(II)

(III)

(VI)

All three isomers crystallize in non-centrosymmetric space groups with unit cells having short a dimensions [in (III), $a=$

Figure 1
The two independent molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 3
Part of the crystal structure of (II), showing the formation of a $C(9)$ chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions $\left(\frac{1}{2}-x, 1-y, \frac{1}{2}+z\right)$ and ($x, y, 1+z$), respectively.
3.7070 (2) \AA in space group $P c$], and in all three isomers the molecules are essentially planar, with the E configuration at the $\mathrm{C}=\mathrm{N}$ double bond. The bond lengths and angles are all normal for their types (Allen et al., 1987). However, the patterns of the intermolecular hydrogen bonds are all different, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in (I), $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (III), and both $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (II). Moreover, the dimensionality of the resulting supramolecular structures is different for all three isomers, being finite (zero-dimensional) in (I), three-dimensional in (II) and two-dimensional in (III).

In compound (I), the molecules are linked by two independent $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) to form an $R_{2}^{2}(6)$ (Bernstein et al., 1995) dimer (Fig. 1). The marked differences in the dimensions of the two hydrogen bonds are
sufficient to preclude the possibility of any additional symmetry. There are four of these dimeric units in each unit cell, but there are no direction-specific interactions between these units. In view of the excess of potential hydrogen-bond

Figure 4
Part of the crystal structure of (II), showing the formation of a $C(2)$ chain along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions $\left(x-\frac{1}{2}, \frac{3}{2}-y, 1-z\right)$ and $\left(\frac{1}{2}+x, \frac{3}{2}-y, 1-z\right)$, respectively.

Figure 5
Part of the crystal structure of (II), showing the formation of a $C_{2}^{2}(11)$ chain along [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (\#), a dollar sign (\$) or an ampersand (\&) are at the symmetry positions $\left(\frac{1}{2}-x\right.$, $\left.1-y, \frac{1}{2}+z\right),\left(1-x, y-\frac{1}{2}, \frac{3}{2}-z\right),\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$ and $(x, y-1, z)$, respectively.
acceptors in this system, in the form of the nitro-group O atoms, the non-participation in the hydrogen bonding of half of the $\mathrm{N}-\mathrm{H}$ bonds is unexpected.

The molecules of compound (II) (Fig. 2) are linked by two hydrogen bonds, one each of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ types (Table 2), into a three-dimensional framework structure, the formation of which is most readily analysed in terms of three distinct one-dimensional substructures. Two of these substructures each utilize just one of the hydrogen bonds, whereas the third utilizes both hydrogen bonds. In the first of the substructures utilizing only one hydrogen bond, atom N 12 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom $\mathrm{H} 12 A$, to nitro atom O 31 in the molecule at $\left(\frac{1}{2}-x\right.$, $1-y, \frac{1}{2}+z$), so forming a $C(9)$ chain running parallel to the [001] direction and generated by the 2_{1} screw axis along $\left(\frac{1}{4}, \frac{1}{2}, z\right)$ (Fig. 3). In the second substructure of this type, atom N12 at (x, y, z) acts as hydrogen-bond donor, via atom $\mathrm{H} 12 B$, to atom N 12 in the molecule at $\left(x-\frac{1}{2}, \frac{3}{2}-y, 1-z\right)$, so forming a $C(2)$ chain parallel to the [100] direction and generated by the 2_{1} screw axis along ($x, \frac{3}{4}, \frac{1}{2}$) (Fig. 4).

The third one-dimensional substructure in (II) contains alternating $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Atom N 12 in the molecule at $\left(\frac{1}{2}-x, 1-y, \frac{1}{2}+z\right)$ acts as donor, via atom $\mathrm{H} 12 B$, to atom N 12 in the molecule at $\left(1-x, y-\frac{1}{2}\right.$, $\left.\frac{3}{2}-z\right)$, and atom N 12 in this molecule acts as donor, via atom $\mathrm{H} 12 A$, to nitro atom O31 in the molecule at $\left(\frac{1}{2}+x, \frac{1}{2}-y\right.$, $1-z)$. Finally, atom N 12 at $\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$ acts as donor, via atom $\mathrm{H} 12 B$, to atom N 12 in the molecule at $(x, y-1, z)$. This combination of the two hydrogen bonds thus generates a $C_{2}^{2}(11)$ chain running parallel to the [010] direction (Fig. 5).

The pairwise combination of these one-dimensional substructures generates two-dimensional substructures. For example, the combination of the [010] and [001] chains generates a (100) sheet (Fig. 6) in the form of a $(6,3)$-net (Batten \& Robson, 1998) built from a single type of $R_{6}^{6}(40)$ ring, and the formation of this net in (II) may be contrasted

Figure 6
Stereoview of part of the crystal structure of (II), showing the formation of a (100) sheet of $R_{6}^{6}(40)$ rings by combination of the [010] and [001] chains. For the sake of clarity, H atoms bonded to C atoms have been omitted.

organic compounds

with the formation of a (4,4)-net parallel to (102) in compound (III). The combination of all three of the one-dimensional motifs in (II) suffices to generate a single three-dimensional framework.

Isomers (I)-(III) can all be regarded as chain-extended analogues of the simple isomeric nitroanilines (IV)-(VI), and it is of interest to compare the supramolecular structures of (I)-(III) with their aniline analogues. In (IV), where $Z^{\prime}=2$ in space group $P 2_{1} / n$ (Dhaneshwar et al., 1978), the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into simple $C_{2}^{2}(12)$ chains. In (V) (Ploug-Sørensen \& Andersen, 1986), a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generates a (4,4)-net of $R_{4}^{4}(18)$ rings, while in (VI) (Tonogaki et al., 1993), the molecules are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into $(4,4)$-nets of $R_{4}^{4}(22)$ rings. Hence, the patterns of the hydrogen bonds employed, as well as the resulting supramolecular structures, are different in each of (IV)-(VI).

Much effort continues to be expended in attempts to predict the crystal structures of simple organic compounds (Lommerse et al., 2000; Motherwell et al., 2002). Variations in supramolecular aggregation behaviour within a series of isomeric compounds, such as those of (I)-(III) described here or of (IV)-(VI), provide a keen test of computational methods for crystal structure prediction. The accurate prediction of behaviour, especially the correct prediction of space groups and the particular hydrogen bonds involved within such series of isomeric species, would generate real confidence in the efficacy of the predictive methods employed.

Experimental

Compounds (I) and (II) were prepared by heating under reflux for 1 h a solution of the appropriate nitrobenzaldehyde (5 g) and hydrazine hydrate (10 g) in ethanol (50 ml). After cooling to ambient temperature, the mixtures were diluted with water (50 ml) and then extracted with CHCl_{3}. These extracts were dried and evaporated, and the resulting solids were recrystallized from ethanol to yield (I) (m.p. 348-349 K) and (II) (m.p. 381-383 K). Crystals suitable for singlecrystal X-ray diffraction were selected directly from the prepared samples.

Compound (I)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=165.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.6675(2) \AA$
$b=13.938(1) \AA$
$c=28.796(2) \AA$
$V=1471.98(17) \AA^{3}$
$Z=8$
$D_{x}=1.490 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius KappaCCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 2003)
$T_{\text {min }}=0.957, T_{\text {max }}=0.997$
11485 measured reflections
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=165.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$=3.6675$ (2) A
$=13.938$ (1) A
$V=1471.98(17) \AA^{3}$
$Z=8$
$D_{x}=1.490 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Mo $K \alpha$ radiation

Cell parameters from 1913 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Needle, yellow
$0.25 \times 0.04 \times 0.03 \mathrm{~mm}$

1966 independent reflections
1247 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\max }=27.5^{\circ}$
$h=-4 \rightarrow 4$
$k=-18 \rightarrow 17$
$l=-29 \rightarrow 37$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0557 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.113$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.02$
$\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}_{\mathrm{max}} \AA^{-3}$
217 parameters

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N212-H21B $\cdots \mathrm{N} 111$	0.95	2.51	$3.307(4)$	141
N112-H11B 211	0.95	2.17	$3.027(4)$	150

Compound (II)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
Mo $K \alpha$ radiation
Cell parameters from 1029
\quad reflections
$\theta=3.7-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Block, yellow
$0.42 \times 0.32 \times 0.10 \mathrm{~mm}$
$M_{r}=165.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.7231$ (2) \AA
$b=10.2200(7) \AA$
$c=19.4119$ (12) \AA
$V=738.62(8) \AA^{3}$
$Z=4$
$0.42 \times 0.32 \times 0.10 \mathrm{~mm}$
$D_{x}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.965, T_{\text {max }}=0.989$
5442 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.092$
$S=1.06$
1029 reflections
112 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 1029 \text { independent reflections } \\
& 897 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.037 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-4 \rightarrow 3 \\
& k=-12 \rightarrow 13 \\
& l=-24 \rightarrow 20 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0532 P)^{2}\right. \\
& \quad+0.0869 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.041(8)
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N12-H12A $\cdots \mathrm{O} 31^{\mathrm{i}}$	0.88	2.34	$3.210(2)$	170
N12-H12B $\cdots \mathrm{N} 12^{\mathrm{ii}}$	0.88	2.41	$3.245(3)$	158

Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$.

Abstract

For each of compounds (I) and (II), the space group $P 2_{1} 2_{1} 2_{1}$ was uniquely assigned from the systematic absences. All H atoms were located from difference Fourier maps and subsequently treated as riding. H atoms bonded to N atoms were allowed to ride at the $\mathrm{N}-\mathrm{H}$ distances identified from the difference maps, namely $0.95 \AA$ in (I) and $0.88 \AA$ in (II), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}) . \mathrm{H}$ atoms bonded to C atoms were constrained to $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous dispersion, the values of the Flack (1983) parameters were both indeterminate (Flack \& Bernardinelli, 2000), and hence the correct absolute

configuration for the crystals under study could not be established (Jones, 1986), although this has no chemical significance. Accordingly, Friedel-equivalent reflections were merged prior to the final refinements for both (I) and (II).

For compound (I), data collection: COLLECT (Nonius, 1998); cell refinement: $D E N Z O$ (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT. For compound (II), data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$. For both compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1751). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Dhaneshwar, N. N., Tavale, S. S. \& Pant, L. M. (1978). Acta Cryst. B34, 25072509.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2004). Acta Cryst. C60, o33-o34.
Jones, P. G. (1986). Acta Cryst. A42, 57.
Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. \& Williams, D. E. (2000). Acta Cryst. B56, 697-714.

McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. \& Williams, D. E. (2002). Acta Cryst. B58, 647-761.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ploug-Sørensen, G. \& Andersen, E. K. (1986). Acta Cryst. C42, 18131815.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. \& Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.

